THIEPKGEISBES

TQUALITY PRACTIA
COFY FURL itz 1 gy 0 LCABLE

3.3 Data Base Utilities
3.3.1 Data Base Utility One (DBU1)

At tho same time the macro package is being crezted, LDRUI
cen be assembled beczuse it does not require the macro packzige,

DBU1l is a
once the dat
DBMS so tnat i
work.

scction of DBMS. Since DBUl is no longer necded
base is put on-line, it is loeded &t the enu of
s core can be relecased once it has completed 1its

T o

The control cards to esscmble DBUl are:

U

IDEN1 <userid>,MAD-DBU]1,ASSEMBLE CBU1
GMAP DECK

SELECTA <userid>/DBU/DBU1MAC
SELECTA <userid>/DBU/DRULDCCU
SELECTA <userid>/CBU/DEU1CON
SELECTA <userid>/DBU/DBU1
SELECTA <userid>/DRU/DBU1SUERS
SELECTA <userid>/LPU/DBU1IINIT
SELECTA <userid>/DEU/DBUIREVE
SELECTA <userid>/DBU/DBU1STG
B ELE C* ,X1R,1UL,NEW,CSDBU]
ENCJOB

RV VSR VIR VR VAN VoS V4 3L VIRE VA RE VIR ¢4}

3.3.2 Data Bese Utility Two (EBU2)

DBU2 can also be assembled 1in parellel with the macro
peckage.

Unlike DBUl, DBUZ2 is & free standing progrem written in
FORTRAN with two GMAP subroutinecs. In one sense, 1t can be
considered a2s cn application program becausc it uses tne FCRYRAN
Language Interface (FLI) to communicate with 2 dota bease. On
the other hand, it does not recuire the FLI storoge associctecd
with a particular dasta basc in order to talk to that data besec.
Instead, DBU2 has 1its own speciel storage thet allows it to
perform the functions descrikted in the Data Rase Utility Cne and
Date Bese Utility Two menual.

DBUZ reaquirtes the object deck of the FLI before it can be
run.

The control cards to compile DBU2 are:




S IDENT <userid>,MAD-DBU2,COMPILE DBU2
3 FORTY BECK,NFORN, NLNC, BCD

? FILE C*X1IR,; 1L, ,NEW,CSDRU2

& SELECIA <userid>/DBU/DRU2S

D ENCJCR

The source for the FOGRTRAN and GMAP routines along with the
control cards are im EBU2S. This job produces object files
named CSLBU2, CSGEINFO and CSDBU.I.

3.3.3 Parsemeter File

Roth DBUl &nd ©TBU2 use the same file to maintain
information for each data Dbase. As each data base ic
inttralirzed for the  first  time;, 2ts Yvitall statistics"™ are

written into the file. The file must be created, nhowever, by
¢ither the System Administrator or the Data Base Administrator.
The filcrome is <userid>/DBPARMF. [CBUl and DEU2 can be made to
reference znother statistics file by using the PF command. Sece
the Daeta B8ase Utility One and Date Base Utility Two manual for
detoils.

1-10




THISP%GEISBESTQUALITYPRAVTIQUKE
FROM CUrY FURNISHED TO DDC —

3.4 Prescen

Prescan is enother progrzm that can be ccmpiled
H* formet for gencral use without the macro package
version of Prescan that rung 1in batch cn: onc that runs in
time-sharing. 'ithe time-sharing wversicon 1is distributed
MADMAN; the batch version is aveilable upon recusst.

Prescan 1is @& free standlng progrem written in FORTRAN

anc put  in
« There is a

with

2R¢

contained in one file, SPRESCAN. To compile e&end install tne
time-shering wversion in H* formet, type CLD SPRESCA!I 2nd RUN

undcr the YFOR system. The first line of SPRESCAN 1is
cormanu which stores the 3% in & file namc¢ PRESCAN.

a run

PRESCAN cennot be run until the schema description has becn

compiled by the ©DDL compliler because PRESCAN uses one

files created by the LCDL é&s Lnput.

3.5 PCé&ta Definition Languége Comgpiler (DDL)

The Data Definition Language compiler 1is supplied
format; therefore, there is no installation procedure.

I-11

of tne
in g*
>




3.0 CLaete Independent Assemblies

This scction ecxplains assewmbling those parts of MADMAN
whlcn rcaulire tne macro packege end which need to be assembled
cnly once. These assemkblies are referred to as data independent
because they do not have to be repeate: for each new cata base.
Inclucdod irn tnis group zr2 the source files for the Page Manager
(P¥), the Late hranipulation Lengucge Processor (CMLP) and the
FOrIRAN Langquage Interface (FLI). All of these source files are
cssentislly written in a macro language.

Except for the FLI, the resulting object files are used in
evary LCB¥S. The FLI's object file 1is 1loaded with every
spplication progroem end DBEUZ2; but, because it is indegendent of
the scheme description, it is cssembled only once.

The control cards for assembling the Page Manager are:

S IDENT <useric>,*PAGE* ,ASSEMBLE THE PAGE MANAGER
S GHAP BECK

S ELENLTS Sty 9K, 50K

> PRMFL ** R,R,<userid>/MACMACROS
9 FLLE C*,X1K,5L,NEW,CSPAGMAN

> 1APE *]1,X2R’

) SELECTA <userid>/LBMS/APPAGMAN

3 SELEC1A <userid>/DBMS/MACEQUS

) SELECTA <userid>/DBMS/EQUALS

) SELECTA <userid>/DBMS/DATA

) SELECTA <userid>/DBMS/PAGMAN

3 ENDJOR

lhe *1 file is put on tape because it grows to more than one
million words.

THIS PAGE IS BEST QUALLIY PRACTICABLE,
FROM COEY EURNISHED 10 DDC o™

I-12

PR P &




A

?H18 PAGE IS BEST QUALITY PRACTICABLE
FRUM CUrY FURNISHED TO DDC R

3.06.2 Data Manipulation Language Processor (DHLP)

Ten seporate assemblies are reaguired to create the data
independent object files ftor the DMLP. The control cerds are
the same for eech assembly except for the nemes of two of the
source files,

S IDENT <userid>,*<name>*,Di LP <name> SECTION
3 GMAP DECK
S LIMITS <limits>, 40K
S SELECTA <userid>/DBmS/BG<name)
9 SELECTIA <useriu>/DLBMS/EACEQUS
) SELECTA <useriid>/BBMS/EQUALS
3 SELECTA <userid>/DRMS/DATA
5 SELECTA <useric>/DEMS/<name>
> PRMFL **k R,K,<uscrid>/MADIAACROS
9 EELE C*,X1D,10L,REX,CS<name>
5 ENDJOB
where:

<userid> is the user master catelog

<name> 1s thc name of the C“LP section

<limits> is the amount of time and corec recuired
for essembly

The values for <neme> and <limits> are:

<name> <limits>
ICMAIN 3u, 58K
MCVLE I £ S0 SRR
STOKE 24, 57K
GET 15, 951K
VEFY 24 ,57K
FIND 24,57K
KV 20, 5 TR
FINDA &5 2K
FINCK U, 57K
CHBGINC 1S S

3.6.3 FORTRAKN Lznguage Interface (FLI1)

The FLI does preliminary checking on the arguments given in
the cpolicaetion progrem's calls to the CHMLP and passes thesc
arguments to the approgriate DBMS wusing Intercom 1/0. The
object file from this assembly must be 1loaded with each
eapplicotion program énd also with OBU2.

k=13

4 A

AP SR P

—ad



The control ccrds for the FLI assembly are:

5 IDEN1 <userid>,*FLI*,ASSEMBLE FLI
S CHAP DECK

$ LINITS u5,57K, ,4UK

S PRMFL ** R,R,<userid>/VALIHACRCS

$ FILE c*,X1'b,10L,NER,CSIOFLIT

> SELECTA <userid>/FLI/ICFLI

$ SELECTA <userid>/FLI/FLIERR

2 ENDJCE

Control <csrds 1in the source files cause the object file

CEFLIERR to be creoted.

PRACTICABLE
JHTS PAGE 15 BEST QUALITY PRACTICABLE
FROM COrY FURNLSHBD 1O BRC i

a4

e T Land

i i



THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COrY FURNISHED TODDC ____—

3.7 Data Dependent Assemblics

There are four assecmblics of date source files reauired for
each dzto basec. These source files are gesneratec¢ by the COL and
describe the scheme, the deata bese data files, the usecr's
buffers for the OBMS, and the dcta base recoras for the FLI.

The assemblies of these source files cannot be done until
the Data Ease Administrator has designcd the data besc ond  its
description hes bteen cowpiled by the DDL.

The control cards to ossemble the four storage files zrc 2s
follows:

3.7.1 8Schema Storage

This assembly uses the '.L' and '.Q' files produced by the
DCDL compiler to generate the taebles that describe the scheme
organization. Its control cords ares

S IDEN'T <userid>,<scheme name>STG,DEHMS SCHEMA S'Y'CRAGE
) GMAP BECK
S LIMITS 24,58X
S PRMFL  **,R,R,<userid>/MADIACROS
$ ETLE C*,%X1E,10L,NEW,<schema nemc>.SC
3 SELECTA <userid>/STG/APECHSTG
S SELECTA <userid>/D2MS/MACEQUS
N SELECTA <userid>/DBMS/DEFS
3 SELECTA <userid>/<schema namc>.L
N SELECTA <userid>/STG/SCHDEF
$ SELECTA <userid>/<schema name>.0
END
$ EHDJOR

3.7.2 Data Base Data Files

The deta base dota filez describe the disc files thsat
eventually will contain the dete. The output of this ascsembly
supplies the Pzge Manaeger with such informstion 2s the names of

the data base storage files and the peges assiqned to cach aorea.
The control carcds for this assembly are:




S IDENT <userid>,<schemz name>DBS,DB DATA FILES
2 GiHAP DECK
5 FILE Cc*,X1k,1L,NEW,<schema name>.PI
S SELECTA <userid>/STG/PIUT
3 SELECIA <userid>/<schema name>.A
END
$ ENDJOB

3.7.3 Uscrs' Buffer Storagc

This asscmbly generates the buffers in the DBMAS for the

egprlication programs. Sixteen is the maximum number of
application programs that can be running against a data base at
onec time. Since apvwroximately 200U words are needed for each

user's buffer, the system Acministrator has been given tne
chility to change the maximum number of users e DEMS can accept.
The voriable NBUFS in file <userid>/USERBUFC 2t 1linc 650
indicztes the meximum number of users. NBUFS can be any value
from 1 through 1l6. Ths results of changing NBUFS to any number
outsidéc this renge ere unprecdictable. MADMAN is distributed
witn NREUFS set to 7.

05U :CONET:NBUFS,7:DEFINE THE MAXIMUM NUMBER OF BUFFERS

change the '7' to the desired vealue.

The control cerds to a2sscemble the users storage are:

IDEN'I <uscrid>,<schema name>U5R,DEMS USER STORAGE
GMAP DECK

LIMITE 24 ,58K

PRMFL ** R,K,<userid>/MADMACROS

FILE C*,%1kR,2L,NEW,<scheme name>.US
SELECTA <userid>/STG/APUSRSTC

SELECTA <userid>/DBMNS/MACEQUS

SELECTA <useriu>/STG/USERBUFA

SELECTA <userid>/STG/wWKSTR

SELECTA <useric>/S1TG/USERBUFR

SELECTA <usericg>/<schema name>.L
SELECTA <useric>/STG/USERBUFC

ENDJIOB

RVEIE VPR VIR VAR VIR Vo IR VISR VRR VOl VIS VT CON V3

I-16




3.7.4 Record Description for FLI

The purpose of this assembly is to generate the tables that
describe to the FLI the records of a particular data base. The
object file from this assembly, along with the FLI object file,
must be loaded with every application program that accesses the
particular data base. :

The control cards for this assembly are:

$ IDENT <userid>,<schema name>FLI,RECORD DESC FOR FLI
$ GMAP DECK
$ FILE C*,X1R,1L,NEW,<schema name>.I
S SELECTA <userid>/<schema name>.W
END
S ENDJOB




™

3.8 MADMAN DBMS H* File

At this point all the object files necessary to put
together a DBMS for a data base have been made. To load all the
object files and store the result in program link (H*) format,
use the following control cards.

IDENT <userid>,<schema name>,MADMAN DBMS
OPTION NOGO,ERCNT/20/,SAVE/DBMS
LOWLOAD 3o

USE .RTYP

ENTRY DBU1

SELECT <userid>/CSIOMAIN

SELECT <userid>/CSMOVEIT

SELECT <userid>/CSSTORE

SELECT <userid>/CSGET

SELECT <userid>/CSVFY

SELECT <userid>/CSFIND

SELECT <userid>/CSRMV

SELECT <userid>/CSFINDA

SELECT <userid>»/CSFINDK

SELECT <userid>/CSCHGINC

SELECT <userid>/CSPAGMAN

SELECT <userid>»/CS<schema name>.SC
SELECT <userid>/CS<schema name>.PI
SELECT <userid>/CS<schema name>.US
SELECT <userid>/CSDBU1

EXECUTE DUMP

LIMITS 02,<core>,-6K

FILE H*,X1D,50R,NEW,HS<schema name>
ENDJOB

“nLnunnnovronnnomnvLnuvwnnvwuvmony Ao

<core> varies depending upon the number of records and set
types 1in the schema and the number of users' buffers. 49K is
sufficient to create most MADMAN DBMS's.

I-18




THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COFY FURNISHED TODDG _____—

3.9 Spawn File for MADMAN DBMS

In order to put a date basc¢ on-line (run the B* file) & s
of control cards must be put in & specwn file under the user
OPNSUTIL. There must be & spawn file for each data be T
name of the spewn file &nd the snumkb for tnec jeb are the schenre
name . Sinee the snumb 1S limited to five characters or less,
all scheme names must elso be five characters or less.

The contents of ezcch spawn file arc:

S IDENT <uscriog>,<scheme neme>,PUT MALCLMAN DRBRMS ON-LINL
) USERID <useridspassword>
$ LOWLOAD
$ OPTION NOSETU
MADMAN environment conditioning objecct deck
S EXECUTE DUNMP,NJKES'L
S PRIVITY
S LIMITS 1lu,<core>,,Y9999
> SELECT <userid>/<schema name>.SL
S ENDJOB

Several parts of the spawn file neccd exvlanation. Probably
most important is the MADMAN environment conaitioning routine.
Its purposc is:

(1) To establish certain system paremeters
(2) To read in the H* file

The system poramcters that are modified are the time limit
and the I1/0 aucues pointer &and counter. To assure system
security, the routine revokes privity efter the changes have
bcen made. The bits indicating privity are cleared in both the
.STATE word &nd the table containina the progrom's attributes.
As a further precaution, thc routine also sets the .SNPAT to
indicate that it is the last activity of the job.

For system security reasons, this routine is supplied to
the System Administrator on cards and each date bsse must be
spcwned from thc operator's console. (See the source listing of
the routine for documentation.)

<core> wvaries depending upon the number of set types and
record types in the data base end the maximum number of user
buffers. The algorithm for <core> is:

17K for MADMAN
mK for uscrs buffers
nK for cate basse description storage

I-19




where m is thc size of the user buffer storage (one user buffer
takes approximately 2K words) and n is the size of the DBMS
schema storage plus the Page Manager storage.

The <schema name>.SL file permits the Data Base
Administrator to communicate with the DBMS. It is in BCD card
formaet and it contains:

l. A control card indicating the H* file to be run.
> PRMFL H*,R,R,<userid>/HS<schema name>

2. 'The control cards and/or data cards for communication
with DBUl.

The two file codes CBUl uses for communication are IT for
input and EM for output. There arc several options open to the
DEA for assigning EM and IT. One is to put DAC cards in the
<schems namec>.SL file for the two file codes. This option
creates & pseudo time-sharing mode in which the DBA connects to
tne DEMS with a terminal and responds to the recuests for input.
The control cards for this option are:

S DAC U
S DAC uo

Inother option is to put the commands to DBUl in the
<scheme name>.5L file. The control cards are:

9 SYsouT Ei
P DATA IT

commence to DBUl (Sec Data Base Utility
Cne anc¢ Dote Bese Utility Two manual)

A third option is to use a PRMFL caerd for 1IT.
If the LIMITS card in the spawn file is incorrect, it can

be overwritten by putting a LIMITS caré in the <schema :ame>.SL
file.

I-20




THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COrY FURNISHED T0 DDG e

4. DATA BASE ADMINISTRATOKR TASKE

For cach data base, there 1is 23 Data Base Administrator
(CBA) who 1is resvonsible for designing the scheme &nd describing
it in such terms that the Date Definition Language compiler
(DBL) can compile it. Anotner DRA tesk is to put the CCMS
on-line and to take it cdown. Thc DBR is =zlso responsible for
explazining to the application programmers how to run Prescan and
what control cards are necessary to run an application program
(AP) .

The following scctions clcborate on the DBA's tasks.

4.1 Jacta Definition Language Comriler (LDL)

One of tne first tesks of the System Administretor 1is to
instsll the DODL compiler. The time-sharing LCCL compiler is
normally supplied with MADFAN on the2 HeUJuU; however the batcn
version 1s available upon recuest. In either cese the only
input 1is the name of the file that contains the scheme
adescription. The file name must zlso be the dzte base name.

Since the deta base name 1is also wused &s & snumb, 1t and
conscquently the filename must be five charecters or less. The
DDL compiler rcads ecither ASCII or BCD files; therefore, the
schhema description file can be built in time-sharing. Sec tho
DDL menual for details concerning schema descripticn.

To run the time-sharing version of the DDL compiler, undor
the YFOR system type GET <userif>/TDDLoluu,k"DBL" znd then RUN
DDL.

The control cerds to run the batch CODL compiler are:

IDEN] <userid>,DPL-H60UUJ,COYPILE HoUUu DATA EASE
PRCGKAM CDLCMF
LIMITS L0, 90K
PrRIFFL H*,k,R,<userid>/BDDLbUOV
PRNMFL ** R,R,<userid>/BLDLGOLUU
schiema name >
SMEBJCH

)

0 A DD Y Y A0 AL

The output of the DOL compiler is six ASCII files, wusually

teferred to as the dot (.) files. The <schemea named>.P file is
essentially & listing of the compilation. The <schema name?>.L
file, the <schema nzme>.0 file and the <schemc neme>.2A file are
inouts to the storege assemblies for the DRRMS, The <schema

name>.Ww  filec i1s input to the storecqge assembly for the FORTRAN
f.onguage Intecrface (FLI). The <schems neme>.F file is input to

I-21

———
e st




2

the Prescan program. Thus the System Administrator cannot build
2 DBMS until the schema description is successfully compiled.

4.2 FKRunning a MADMAN DBMS

Cnce the ©System Administreator has created a DBMS for a
perticuler date besc, the Data Fese Administretor is responsible
for putting it on-line and shutting it down. To put the data
b2se on-line, the DBA

l. Puts the appropriate control cards in the
<schema name>.SL file. This file is in BCD card
format. It contains the PRMFL card indicating
the DBMS H* file and the control cards and/or
dgata cards for DBUl input and output. (Sce
System Administretor's Tasks, section IX and
the Data Base Utility One and Da*a Base
Utility Two menual).

2, Asks the computer operator to spawn MADMAN DBMS
for the particular data base. The spawn file has
the scme name as the deta base and the schema description
file. This name ktecomes the snumb; therefore, it must
be five chareécters or less.

3. If DAC is used to communicate with the DB3U1,
the DBA2 can now connect to the DBMS with a
terminal.

To shut the cdate base down or to communicate with the DBMS
after the data bese 1is on-line, the DBA runs DBU2. The
communication with DBU2 1is accomplished through DAC. The DBA
connects to DBU2 zfter DBU2 is initiated wunder CARDIN. Input
and output is then performed 1in a pseudo time-sharing
environment.

CBU2 cen also be run strictly batch. See the Data Base
Utility One and Data Base Utility Two manual for details.

The control cerds to run DBU2 are:

SELECT <userid>/CSDBU2
SELECT <userid>/CSGEINFO

I-22

5 IDENT <userid>,**DBU2**, RUN MADMAN DBU2
$ OPTION FORTRAN

3 USE .RTYP

$ USE +GTLIT

$

3




9 SELBECT <userid>/CSDRU2.1
S SELECT <userid>/CSIOFLI
S SELECT <useria>/CSFLIERR
) ENTRY DRU?2

S EXECUTE DUMP

S DAC U5

S DAC U6

9 ENDJOB

See the Data Base Utility Cne and Deta Bese Utility Two
manuel for the commends available to DBUl and DBU2.

I=23




4.3 Prescan

Prescan is available in both a batch and a time-sharing
version. The time-sharing version is distributed with MADMAN;
the betch version is available upon request.

Before Prescen cen be run, the System Administrator must
mwake the Prescen H* file and the Data Base Administrator must
successfully compile the schema description. The 1input to
Prescan 1is tne <schema name>.F file produced by the DDL compiler
and z FOKRTRAN application program (AP). The output is a FORTRAN
progrzm that conteins the AP and labeled commons and veriables
reclated to the schema.

To run Prescan in time-sharing at the SYSTEM? Level, type
/PRESCAN.

See the Prescan manual for deteails.

The controcl cards to compile the application program after
it has been through Prescan are

S IDENT <useria>,<identification>
3 FORTY DECK,ASCII,<other options>
$ SELECTA <userid>/<filename>
S FILE C*,X1D,1L,NEW,<object filename>
$ ENDJOB
I-24

—_— — e and



4.4

assemkbled, tne FLI storage for the given &

THISPAGEISBESTQUALITY?RAC

: TICABLE
FROM COry FURNISHED TO DDC

i

Running zn Application Program

After the FORTRAN Language Interface (FLI) has been
ata base has been

sssembled end the cppliceticon program (AP) has been compiled,
the AP cén be run (assumina the DBMS is on-line).

874

. 4 X6 Ly 6

U

Ui

The control cerds to "load and go" are:

IDENT <userid>,<identification>
LCWLCAL

OPTIOW FCRTRAN

SELECT <userid>/<AP object file>
SELECT <userid>/CSIOFLI

SELECT <userid>/CSFLIERR

SELEC1 <userid>/<scheme neme>.I

OSE +GTLET

EXBCUEE

other control cerds and/or aatea

ENDJOB




i

5. ADDING NEW MADMAN DBMS's

The mechanism that tailors a2 MADMAN DBMS to & particular
data base is the tables createa by the DDL compiler. For the
seconc¢, third, nth DBMS, therefore, only the storage files need
re-cssembly. The System Administrator's tesks for adding a new
DBMS once the first one is installed are:

1. Assemble the data dependent files
(System Aaministrator Tasks, Section VII)

2. Make the DBMS H* file
(System Administrator Tesks, Section VIII)

3. Createc the spewn file
(System Administraetor Tasks, Section IX)
The System Administrator may also have to expand the
inter-s3lave communicaticn table.
The Data Base Administrator tasks, however, all derive

their 1input from the description of the perticular cata base.
1Thus the DBA must repeet every task for each new data base.

I-26




2

THIS PAGE IS BEST QUALITY PRACTICABLE
FRUM COrY FURNISHED TO DDC

MULTI-ACCESS DATA EBASE MAMAGEMENT SYSTEM

(MADMAN FOR THE EDP-11 AND THE HobUUuu)

CATA DEFINITION LANGUAGE YANUAL

This menucl contains the documentation for the Multi-Access
Cota Bese Manacgement System (t1ADMAN FOR THE HolUuy) Dete
Definition Lenguege (DDL). The information contained in this
document is not intended for o novice reader; the reeder 1S

expected to heve some knowledge of data pase facilities and
lengueges to usc those fecilities.

MACMAN was originally implementec on the POP-11 under the
RSX-11D opcraeting system. For the most part, the descriptions
conteined nerein are machine and system indepencent. Some of
the dete formats, howcver, are bescd on 3 word size of two bytes
(loe bits) for the PDP-11, 4 bytes (56 bits) for the HouUuu. An
attempt has becn made to modify the references to FPLDP-11 Cdata
formats to reflect thosc of the HouUU.

January 1976 for MADMAN on the PDP-11

June 1977 for “ALUAN on the BoulOu

Copyright 1976 by Generel Electric Company

II-1/11-2

sl A




i1

LANGUAGE SPECIFICATIONS for DDL

This section contains language specifications for the Data

Description Language.

L3

17

Notation

A construct enclosed in sguare brackets ([]) is optional
and may be omitted from the source schema. This notation
is used to designate optional constructs whose presence
or absence alters the mecaning of the schema.

A construct enclosed by "{" and "}#" may be repeated in
the source schema. If the braces are omitted, the "#"
applies to the 1immediately preceding metaveriable or
optional construct.

If rcpetition of an optional construct is indicated, a
minimumr of zero occurrences is allowed.

words 1in the source scheme must be separated by a space
character, commea, semicolon, <carriage return, or any
combination thercof.

Lxcept @s noted above, items enclosed by angular brackets
(<>) denote variables for which appropriate values must
be substituted 1in  the source schema, and items not so
cnclosed are literals which must appear as given 1in the
syntax. Underlined literals are mandatory, and those not
underlined mey be omitted without altering the meaning of
the schema.

Exclamation points (!) are used to delimit comments in
the source schema. All characters between and including
paired exclamation points will be ignored by the
compiler. Such comments may appear anywhere 1in the
source scheme that a space character may appear, and will
be treated as a space.

I1-3

g s —— S A —— - -




———

o — ~——rw —~ —~— T \
<apowdy TUNIS =:: <KE33eUlS 932UGLS)
¢1STT B0UB4dJaJ A33%) m@uhamx =i CAD0T 33TJM>
¢ASTT 90UdJdJaJd A3N> SHAOYAH =:: <NO0T pEaJd
CJAITJTAUSPTY =:: (DWRBU PJODaJ)>
<AkBaqeuqs 98BU01S> [(MDO] 23TdM>] [¢A#007 pedu)] <dweu pusodddy QqUDIAY = <PT pJooIJ>
| 87 CUOTAIEJRTOSP WB3I>] <PT PudOBU> =1 (UD13RBJE[DIP PLOIIJ)

®CUOT4ZJETOID PJIODDIY =:

<JBTJTUIPTY =::

SA0Yd <J3837UT> TT (OUWEU edJdE) FAHUY =::

®<UOTQEJR[O9p EIJB) =

¢3weu dnodd £y | Aoy =:: ¢juldWal

00U3UD 134 ABND> (JUDWATI Tud> | <IJUSWATI TJA) =:: C3ISTT 30U>

(J3T1J11U8PpT> =i (ouzu

J

CUOT303S pJ0ddJ)

{(2Weu eaJe)

(UOT3}BJRTD3P BBJE)

¢ CUOT3CIT ES9JdE)

144>

rJod KoA>

dnou?Z Aox>

<1STT 3cuaJdajad Aaxy AINPA <ducu dnouad LAy Hn  =:

<4ITJT13UapT>

<3STY uotjeacioep Aax> <hajy | <haxyy =::

6[<dnoud £a3>] <3ISTT uorjederdap Aax> TXAN =:

<J438a3uT>

<JOTJTRUIPT> =::

(9SE3TaJ> TAC <JI833UT> NDISHAAN <OWEU BUAYDSY YWARIS

an

: ¢dnsag Kaxn)

=25 CRON>

<1STT uoTjeaelvop Aox>

¢UOT}0925 SS3008€)>

=:: ¢oseaTaJd)

<aWeU BUWSYTS)

12 CUOTIADSE PI>

3 <UOT]3TOS 133S) (UOTQ09S PU0OIIJ> <UOT3Cas E9dl) [(UOT30aS mwwuomvu <UOT303S PTI) =:!:! (2WIUDS 324Nn0OSs)

xejués 1qa 2°!

I1-4




<@8equUT[> <3dAq AUTT> | <odh3 NUTI[> =:: <a3Zequrl>

Q3XHANT | 34Xl NTHITM a3140S | G3LH0S | HALJV | J60JAd | ISV | ISHTIA =:: <uUO13IJasuT>

<JBTJTIUBPI) =:: (aWeU 33s5)
[<o8exutrl> 0L JINIT] <u0T3Jasul> TUASNI <PWEU pJodsd> SI FANMO <3weu 3as)y I3T =:: (Sa3NQTJ33e 395>
TION T3S | #<uoriede(dap oy1ed> 3TVD I3S | €<CUOTI3BJETO3P JaqUaWd (S31NQTJ3]E 13S) =:: C(UOTIBJBIOIP 33S)
®CUOTIEBJBTO3P 13S) =:: (UOT}V3S 1398)
<3ISTT 90UaJajaJ Aa)d> TYIASNH =:: <AO0T asn)
<J3893uTr) TUMNDI0 =:: <Sa2U3J4JNDD0)
Y3LOVYVHD | vad | ¥IDJINT =:: <odh3>
<9dAy> FLXd <u428oquTry =:: (uOTiIEBjUISIJUdEJ)
¢(JSTJTRUAPTI> =:: (AWeU WIIT>
[<A00T1 @8sn>] [<(Sa0UBJUNDD0)>] (UOT3BRUISAIdaU) TT (WEU WSYT) WALI =:: <UOTJeJEIOap Wall>
CISNPAV | TISNPAY | XTIIVIAIWWT =:: <juauisnlpe)
<uoT3eorjioads Eade> NI J7IV) HAd =:: <9pouw 33S D[Ed)>

${<2-u0131E01J100ds Baue) NT <p-J2823uTl> [0OI <£-ua833qut>] [<auauwisnlpe>] NIRL

[<L-uoT3Ed1JToads Eaue> NT] MANMO VAN <2-40833uT> (DI <1-Jd823uUT>]

[3ATSNTOXT] DNTAHISAY} [XTINANVANAd] <oweu 38s> ¥ad =::! (3pOW 33S PaAJIasaJd>

[<uotjedrjyT1oeds eade> NI NAHL] <SWEU 38S> PAd =:: <3pOW 33S PIaAJIISIJIUOU)

<9poW 39S OTBO) | (3pOW 139S PIAJUISBJ) | (IpOW 39S PIAJISIJIUOU) =:: (IpoW 338>

<UOT3EOTJTO0adSs ©BaJE> NI <J438373UT> TTYAHALINI =:: <3pouw [eAd3ajul>

<3STT BOJB) (QWEU BIJR) | (SWEU EIdJE) =:: (IST[ BAJE)

<ISTT BBJE)> SYJHY | <IST] EOJE> YJYyy =:: CUOTJBOTJTOads eaue)

[<uoijed1j1oads eaJe> NI] IJAETIA =:: <9pOW 30241p>

<J2897uT> FOVJ NO <oweu eade> YIYV NI ANDINA =:: <apow anbruny

"

<9pouW 338> | (BpOoW TBAJDIUT> | <Ipow 3034IP)> ! <apow anbiuny =:: (apow)

II-5




>

<

‘WeU 9dnpadoudy HNTISNH] <3

¢J9TJTIUaPTy =:: (3weu adsnpadoud)

¢1043u0d dnp> SAIYDOT 1400

STT Wa1T> N0 JTV) <OUEU PJ0OSJ) ST FIANTA =:! CUOTIEJ2109p OB

qINIIY | A3103rad | ¥313V | JW03AG =:i: <1oJaucs dnp>

ORTQN30S30 ; DNIQNIJSY =:: <uO0132341p>

<ISTT WOJIT> (UOTIDBUTIP) (IWEBU WIIT)Y | [CUOTFO3J41IP>] (3WEU WIIT> =::! (IST] W3a1T>

TYONYA

[¥3INH0 01 ANTT)

v DTIVWOINY [Q3XTd | TYNCTIL40 | XENLYANVW] =:: <drysusquau)

[<Toujuod dnpy SATVITI4NA <3ISTT waiT> MO THCS]

[¢G1YsSJaaquamwd ] <aUBU PJOd3dJ> ST FIAWAAW =:: CUOTIeJBID3p J3QWAW)

ISV | U3NMG | HOTHd =:: <adhy Nurips

I1-6




1.5 Reserved Wwords

ADJUSTI
ADJUSTZ
AFTER
ALLOWED
AREA
AREAS

ASCENDING
AUTOMATIC
BEFORE
BYTE

CALC
CHARACTER
DDL
DESCENDING
DIRECTE
DUPLICATES
END

EQUIV
EXCLUSIVE
FILE

ELRST

ELXED
IMMEDIATELY
IN

INDEXED
INSEKT
INTEGER
INTERVAL

E&S

LTEM

KEYS

LAS]

LINK

MANDATORY
MANUAL
MEMBER
NEAR

NULL
OCCURS

ON
OPTIONAL
OR

OWNER
PAGE
PAGES

PER
PERMANENTLY
PRIOR
READERS
REAL
RECORD
REJECTED
RESERVING
SCHEMA
SET

SORT

SORTED
STORE
THEN

TO

TYPE
UNIQUE
USERS
USING
VERSION
WITHIN
WRITERS

II-7

 ———————————




2

1.4 Semantics and Notes
GENERAL:

The wuse of any character not defined here will produce an error
message and require that the line be re-input to the compiler
from the point of error.

The value of <identifier> may never duplicate a reserved word.

DDL:

The DDL 1is the language for describing the structure of z data
base. The description written in the DDL is the source schema.
The source schema consists of five parts:

A schema id section which identifies the schema,
An optional access control section,

A storage area description section,

A record description section, and

A set description section.

ID SECTION:

<schema name> is the identifier used to reference the schema and
distinguish it from other schemata. Schema names may be a
maximum of five characters in length.

VERSION <integer> specifies the version or generation of scheme
having this name.

<release> specifies the version of the DDL in which the source
schema is written. If the compiler is not capoble of acceoting
the designated version of the language, an error mcssage will be
generated and compilation will not be attempted.

ACCESS SECTION:

The access section defines application program authority keys

and defines symbolic names for groups of these keys. These
specify the subsets of the data base that are visible to
application programs. Applications programs specify the

authority key or key group name in their INVOKE declarations and
DBOPEN procedure calls.

<key declaration list> names application program authority keys.
A maximum of 15 keys may be named.

<key group> defines and names groups of keys for convenient
reference. <key group name> 1is the name given to the group of
keys referenced in the corresponding <key reference
list>arguments.

I11-8




Appearance of a key group name in the source schema is
equivalent to appearance of its associated key reference list.
If key group names appear on a key reference 1list, this
equivalence is applied recursively.

Up to 32000 key groups may be declared.

Any key may be mentioned any number of times in key reference
lists.

Circular definition of key groups is not permitted.

If the access section is omitted, all programs are granted full
access to all portions of the data base.

In any case, a special authority key DBAKEY available only to
the data base administrator permits unrestricted access to the
entire data base. This key need not be declared or included in
any key reference lists.

1f @ key reference list consists of a single key name, then the
assocliated key group name is a synonym for the key name.

Key group declarations are strictly for the convenience of the
DBA to avoid the need for repeated occurrences of 1identical
lengthy key lists in the source schema.

The ability to perform retrievel operations on sets reqguires
read access to the owner record type as well as to any member
types being accessed.

AREA SECTION:

The computer system is assumed to provide storage space composed
of files, which in turn consist of an assigned number of pages
of uniform size. The number of pages in a file is assigned by
the appropriate system control facilities.

The area section of the DDL defines portions of files to be used
for data storage.

Fach area is contained in a single file and occupies a specified
number of pages within the file. Any page of a file may be
assigned at most to one area.

Each occurrence of <area declaration> specifies one area of the
data base.

<areca name> 1is the identifier by which the area is referenced
elsewhere in the source schema and in the application program.

EE=9




A

<file id> identifies the file within which the area 1is being
defined. This must be in the form of an H6000 file cesignation:
"/name" .

<integer> specifies the number of pages from the file to be used
for the area being specified. Areas are assigned within the
file in the order in which their declarations are encountered.

The sum of all assignments specified by <integer> for any file
may not exceed the number of pages available in the file.

A minimum of one area must be specified, and a maximum of 127
may e specified.

RECORD SECTION:

The purpose of the record section is to declare record types to
be stored 1in the data base, component items of these record
types, and the storage strategy for each such record type.

Each occurrence of <record declaration> declares one record
type.

A minimum of one and maximum of 60 record types may be declared
for MADMAN on the H6000. For MADMAN on the PDP-11, the maximum
is 127.

<record name> 1is the identifier by which the record type is
referenced in the application program and elsewhere 1in the
source schema.

<read lock> specifies authority keys which permit a program to
detect occurrcnces of records of this type. A record may be
"detected" if it will satisfy a FIND operation regardless of
whether or not the program has access to any data items within

the record. This access 1is granted to a program if its
authority key 1s contained either in <read lock> or <write lock>
or in <use lcock> for any component item of the record. Thus,

<read lock> will normally specify only those authority keys for
which programs are to be @allowed to de_ect occurrences of
records of this type, but for which no access is granted for any
component item,

If any authority key appears in <write lock> or in <use lock>
for any component item, its appearance in <read lock> for that
recorc¢ is optional and without additional effect.

<write lock> specifies authority keys which permit a program to
modify, create, or destroy occurrences of records of this type.
Modification includes altering item values and changing set
participation.

11-10



A program whose authority key appears in <write lock> may
initialize or modify only those items for which its authority
key appears in <use lock>.

A special authority key DBAKEY available only to the DBA permits
unrestricted access to the entire data base. This key need not
be mentioned in the lock declarations.

If the ACCESS SECTION 1is omitted from the source schema, no
locks may be declared. In this case, all programs have
unrestricted access to the entire data base.

{storeage strategy> specifies the algorithm to be wused in
locating storage space for each newly-created occurrence of the
record type, éand provides certain parameters to be used by the
algorithm,

If UNIQUE mode 1is specified:

When the data base is initialized, a single occurrence of
the record type is created and stored in the area and page
specified. All 1items are initialized to binary zero.
Additional record occurrences may not be created, nor may
the single occurrence be destroyed.

UNIQUE records may not be members of any set.

Curing the lifetime of any run unit, the single occurrence
of each UNIQUE record is always current of its type. It
may or may not be available to the run unit, depending on
authority key. A UNIQUE record may be accessed by name as
current of its type without use of or reference to its data
base key, set membership, or other conditions or criteria.

Except for the above restrictions, UNIQUE records may be
declared and wutilized 1in the same manner as any other
record.

Any set owned by a UNIQUE record 1is termed a "singular"
set. Fvery such set is always the current set of its type.

I1f DIRECI storage mode is specified:

The application program creating each occurrence of the
record type must specify the area and page number where the
record is to be stored. If no space is available on the
designated page, an error is returned and the record is not
created. The designated area must be one of the areas
named by <area specification>.

1f the optional <area specification> phrase is omitted, all
areas of the data base are valid for storage of records of
the type being declared.

II-11




1f

TH ’
IS PAGE IS BEST QuaLITY PRACTICABLE
COPY FURNISHED T0 pDE ]

INTERVAL storage mode 1s specified:

The DBMS will maintain a "current area" designator for the
record type. This will be global to all run wunits, and
will point to one of the areas of <area specificetion>.

The DBMS will also maintain an "append pointer" for eech
area of the data base. These will be global to all run
units, &nd each will point to onc page within its areca.

Each INTERVAL record 1is storcd on the page designated by
the append vointer of the current area for the record type.
If sufficient space 1s not available on the page, the
append pointer 1s incremented by one and the process
repeated until space 1s found. If the end of the area 1is
encountered, the append pointer is reset to the first of
the area, the current area designator is changed to point
to the next area specified by <area specification>, and the
process repeated. i there are no other areas on
Carea' specification>, the current area designator is reset
to the first area of <ares specification>.

Wwhenever the appen? nointer for an arz2a is reset to th
first of the area, 2ll current area designators in the data
base which are pointinga to that area are changed to the
hext area of their roespective cree specifications. When an
areca specificetion is exhcusted, the designator is reset to
the first atea.

Once space has been located for anm INTERVAL record, the
append pointer whicao wa2s used is incremented by <integer>
pagces. if the »nd of “an aresz is encountered, the are

append pointcr is resot, current area designators are
changcd @as describea above, and the new INTERVAL append
pointer incremented by the number of pages by which the end
of thc vrevious arca would have been exceeded. In other
words, <area specification> is treated as a single,
contiguous logical storage space.

a

If PER <set name> mod~? 1s specified:

<set name> 1s designated thc prime storage set or simply
the storage set for the record type being defined. Storage
space for each record occurrcnce is located with respect to
the ogcurrence of <set named in which the record
participates at the time it is crected.

The record type being defined must be an  automatic member
of <sct name>.

The nonreserved anud treserved forms of PER <set name>
control whetner or not space will be reserved 1in advance

II-12




for storing groups of members on each storage set
occurrence.

If the nonreserved form is used, no space is reserved in
advance of storing occurrences of the record type being
declared. When such a record occurrence 1is created, the
DBMS attempts to place it at its insertion point on the
storage set. That is, it attempts to find space on the
page of the prior, next, or owner record of the storage
s¢ ©» There is no guarantee that storage will be attempted
on all three of these pages, nor of the order in which
these pages will be examined. If insufficient space 1is
available on these pages, the areas named 1in
<area specification> are searched until space 1is found.
This search uses a current area pointer and area append
pointers as though the record type required INTERVAL
storage mode with an interval value of zero.

If the optional THEN phrase 1is omitted and the record
cannot be placed at its insertion point, space 1is located
by searching the area of the prior record from the
insertion point. No current area pointer or area append
pointer is used. Note that if all member types on a set
use the nonreserved set mode omitting the THEN phrase, then
members will always be stored in the area of the owner.

If the reserved set mode of storage strategy is used, then
space may be reserved in advance for groups of members on
the storage set. Blocks o0f reserved space are termed
"partitions". Each partition 1is associated with exactly
one storage set occurrence, and only eligible members of
that set occurrence may be stored in the partition.

The DBMS never moves records between partitions. If a
record is placed in a partition when it 1is created and
later reassigned to a different occurrence of its storage
set, it remains in its original partition as a "stranger"
record.

Partitions for a record having reserved set mode may be
created under two conditions: whenever a storage set owner
is created or whenever an eligible record is to be stored
and any existing partition has been filled. Partitions
created with the owner record are placed on the page of the
owner record and are termed "near" partitions. Other
partitions are termed "overflow" partitions. Reserved
space 1insures the clustering of records which might
otherwise be scattered throughout the storage space.

Use of the optional term PERMANENTLY specifies "permanent"
partitions. Otherwise, "disappearing" partitions are used.
A permanent partition retains 1its identity as reserved
storage space after being filled with member records. A

II-13




disappearing partition is decstroyed once it 1is filled,
leaving 1ts component records stored as though they had
never been placed 1in a partition. The option affects
re-use of space vacated by deleted records and space
overhead required to maintain partitions.

In either case, each storage set occurrence may have one
partition 1identified as the active partition. This is the
partition in which space 1s available for members to be
stored. When the owner and near partition are created, the
near partition 1is the actlve partition. If the set
utilizes permanent partitions, then several may exist
simultaneously for any set occurrence. However, only one
is considered the active partition at any (ime. TE
disappearing partitions earc specified, any set occurrence
may have only one partition at a time, and that must be thec
active partition.

If a record is to be stored in permanent pertitions, it
will always be stored in a partition. This may be either
the partition at the insertion  point o©or  the active
pactition. If the record type specifies disappearing
partitions, and if there is no spaece in the approgriate
partition on the page of the inscrtion point, then the DBMS
will attempt to store the recoré on the page of the
insertion point outside any partition. If this fails, the
active partition will be used.

Only areas in which owners of <set ncme> may be stored may
be named in <area specification-1>. Cmission of
<area specification-1> from the RESERVING phrasc implies
all such areas not explicitly nemed for the record type
being declared. No area may be named more than once in the
<area specificsation-1> phrases for any record type.

whencver an owner of <set name> 1is stored in any area named
or implied in <area specification-1>, the DBMS will zttempt
to reserve, on the same page, space for ot least
<integer-1> and no more than <integer-2> records of the
type being defined. If the owner is being stored in a
previously-reserved space, new space reservation 18
external to this but on the same page. If the owner being
stored 1is eligible for placement in & previously-reserved
space, it will be store¢ there cven though space for
<integer-1> member records cannot be reserved on the page.
In this case, tne largest possible space will be reserved.

In all other cases, the ©[CBME will 1insure that a near
partition ablc to contazin at least <integer-1> members will
be created for ceach owner of <set name>. Since the owner
of <set name> may itsclf have & storage mode of UNIQUE,
DIRECT, etc., the spacc scarch for these modes will locate

11-14

e



a page with enough empty space to allow creation of the
owner record and near partitions.

If the optional <integer-1> TO is omitted, then <integer-1>
is assumed equal to <integer-2>.

<integer-1> may not exceed <integer-2>.

The total space recuired for an owner of <set name> and any
ncar partitions may not exceed one page.

If the optional term EXCLUSIVE is used, the near partition
will be available only to the record type being specified.
Otherwise, it will be shared by all record types having
reserved set storage mode, the same use of the PERMANENTLY
option, and the same storage set owner. These other
records may be other member types on the same set, or
members of other set types.

If a partition mey be shared by multiple record types, the
minimum size will be the largest of the various minima, and
the maeximum will be the largest of the varjous maxima,
converted to words of storaye.

The THEN phrase specifies the manner in which overflow
partitions are to be created. <integer-3> and <integer-4>
specify the minimum and maximum number of records to Dbe
accommodated in each overflow partition. When an overflow
partition must be created, the DBMS first tries the page of
the insertion point. If there is not adecuate space on
this page, the arecas specified in <areo specification-2>
are searched until a page with enough space 1is found.
These areas are searched using area append pointers and a
current arec pointer, as in the nonrescrved set mode.

<adjustment> specifies optional special treatment of the
first overflow allocation. IMMEDIATELY specifies that only
the svecified near partition is to be placed on the page of

the owner. Once the near partition is filled, no attempt
is made to create an overflow partition or use "“crack
filling" on the page of the owner even though space may be

available. The overflow areas are used as soon as the near
partition capacity is exceeded.

ADJ]1 specifies that ¢the initial allocation plus first
overflow allocation must equal at least <integer-2>
records. ADJ2 specifies that the initial allocation plus
first overflow allocation must ecgual at least <integer-2>
rlus <integer-3> records. All other overflow allocations
are in the range <integer-3> to <integer-4> records.

11-15




2

A value of zero for <integer-2> indicates that no space 1is
"~

to be reserved when the owner is stored. Crack-filling"
will be attempted unless IMMEDIATELY is specified.

The PER <set name> options described above permit
specification of near and near-star strategies in both
competitive and reserved forms. Samples:

Near-competitive (IDS "near"):
o o PER SEOQPPYSET

Near-reserved:
... PER CLCSEBYSET RESERVING 5 TO 10 NEAR OWNER
THEN 10 TO 15 IN AREAS ALPHA, BETA

Near-star (immediate overflow reserved) :
..« PER FARAWAYSET RESEKRVING U NEAR OWNER THEN
IMMEDIATELY 15 TO 20 IN AREAS BLIGHTED

If PER CALC is specified, the CALC set is the storagc set
for the rccord type. <area specification> gives the areas
over whici rccord occurrences randomize. Each page of tn:
data base contains a CALC set owner occurrence, and member
storeagce 15 cculvalent to the nonreserved set mode with no
arca specification.

If PER CALC is specified, the record type being specified
must be named as a CALC sct member in the set section of
the schema.

<item declaration> defines component items ur the record.

<item name> is the identifier by which the 1item 1is referenced
elsewhere in the schema and in the epplication program.

<integer> defincs the item size in bytes.

The value of <integer> must be valid for the mode specificd:
INTEGER mode mcy specify 1l- to 15-byte items
REAL mode may specify 4- or 8-hyte items
CHARACTER mode may specify 1- to 127-byte (character) items

<occurrences> specifies the number of occurrences of the item in
cach record occurrence. If omitted, this is assumed eauzl to
one. Multiply-occurring items c&re seen as one-dimensional
arrays by the application oprogram.

<use lock> specifies the authority keys which permit transfer of
the item value to the UWA. If & run unit's authority key is
contained in <key reference list>, the run unit will be allowed

II-16




z

to detect occurrences of the record type and the item value wil!
be made available in the UWA by a GET or CBTN function
referencing this record type.

If a run unit's authority key appears in both <use lock> for an
item and <write lock> for the record type in which the item
appears, then the run unit may modify values of the item.

A special authority key available only to the DBA permits
unrestricted access to the entire data base. This key need not
be specified in any lock declarations.

If the ACCESS SECTION is omitted from the source schema, no
locks may be declared.

The RECCRD NULL form of record specification causes the next
scauentiael value of the internal record type designation to be
assigned as an invalid value. Any DML function using an invalid
type designation as an argument will return an error.

Values of internal record type designation are assigned
scouentially as record declarations are encountered 1in the
source scheme. DML functions wuse 1internal type designation

values as argquments.

SET SECTIONS

Each occurrence of <set declaration> defines one set type. <set
attributes> defines the set-level characteristics, and <member
declarction> defines member-level characteristics for one or
morc¢ member record types. SET CALC specifies the randomizing
set whose attributes are system-defined, and <calc declaration>
defines members of this set.

<set namc> declares the identifier by which the set type 1is
refercnced elsewhere in the source schema and in the application
program.

The compiler assigns type numbers to sets depending upon their
order of declaration in the source schema. The reserved word
NULL may be used for <set name> to suppress assignment of the
ncxt type number in the normal seaduence. In this case, the
rcmainder of <set declaretion> is ignored and may be omitted.
such artificial set declarations have no effect other than to

control type number assignment.
<record name> defines the owner record type for the set.

<insertion> specifies the ordering rules for thes set:

I1-17

s Py




THIS PAGE IS BEST JUALITY PRACIICABLE
FROM COr & rvaunlonwy 4u LUG "

FIRST or LAST: New members are inserted as first or last of
member seauence, respectively, on selected set
occurrence.

BEFORE or AFTER: New members are inserted before or after
the 'current of set' of the seclected set occurrence.

SORTED: Members ere sorted on sort keys specified as part of
the member declarations. Each set occurrence
constitutes one sorted seauence of member records.

SORTED WITHIN TYPE: Occurrences of ecach member type on the
set are sorted on sort keys specified as pert of the
member declarations. Otherwise, member seguence is
determined i1n a menner convenient to the DBMS.

INDEXED: Set members are sorted as with the SORTED option,
but in addition the system maintains an index allowing
access to members for given sort key values without
exhaustive searching of the set.

<link type> specifies optional pointers which may be used in
addition to the reguired 'next' pointer for the set:

PRIOR: Each record contains a pointer to the previous record
of the set (reverse set order).

OWNER: Each member contains a pocinter to the owner of the
set occurrence in which it participates.

LAST: The owner contains & pointecr to the last member. If
PRIOR or INSERT LAST is specified, such a pointer is
prescent and LINK LAST is without additional effect.

Each occurrence of <member declaeration> decléres one member
record type on the set being defined. <record name> 1is the
record type being declared & member.

AUTOMATIC membership causes each record occurrence to be
assigned to a set occurrence by the DBMS when the record 1is
created.

MANUAL membership reouires that the application program assign
set membership by means of thc INSERT procedure.

MANDATORY membership specifies that once an occurrence of the
record type 1is made a member of any occurrence of the set type
then it will always be a member of some occurrence of that set
type. The record can be moved from one set occurrence to
another by meaons of the CNGSET procedure.

I1-18

a

A B




THIS PAGE IS BEST QUALITY FR CTICABLE
FROM COrY FURNISHED TODDC

OPTIONAL membership specifies that membership in an occurence of
the set is not permanent and may be cancelled by means of the
REMOVE procedure.

FIXED membership specifies that once an occurrence of the record
type 1s made a member of any occurrence of the set type then it
must remain & member of that occurrence of the set.

I1f the optional <membership> phrase 1is omitted, MANDATORY

AUTOMATIC membership 1s eassumed. If the <membership> phrase
specifies only AUTOMATIC then MANDATORY AUTOMATIC membership 1is
assumed. If the <membership> pnrase specifies only MANUAL then

OPTICONAL MANUAL membership is assumed.

SORT ON <item list> designates component items of the record
which are to be concatenated to form the sort key for the record
on <set named. The SORT ON phrase must be used if the set is
SORTED, SCRTED WITHIN TYPE, or INDEXED, and may not be used
otherwise. The major-to-minor sort sequence is the order in
which items appear on <item list>. Any sort key component may
be svecified ascending or descending. If neither is specified,
ascending 1s assumed.

<dup control> svecifies action to be taken if duplicate combined

sort keys are encountered on & single set occurrence. BEFORE
and AFTEKR specify that a duplicete is to be placed immediately
before or after previously-stored occurrences in the set
seauence. KEJECTED specifics that set assignment is not to be
made, and that an crror is to be returned to the application
program. ALLOWED permits duplicates, with the order within any
jroup of duplicetes determined 1n a manner convenlent to the
CEMS

<calc declaration> specifies members of the randomizing or calc
set. <record name> is the record type being assigned membership
on the set, ancd <item 1list> specifies items wused for set
selection and for sort keys. Each such item must be declared as
zn item in <record name>, and <record name> must specify the PER

CALC storege strategy.
<vrocedur: name> designates the randomizing procedure to be
pplied to <item list>. If this is omitted, a standard system

procedure 1s used.

fhe c2lc set is SCGKTED WITHIN TYPE and linked next.

The SETR NULL form of set specification causes the next
secuential value of the internal set type designation to be
ssiqgned as an invalid vaelue. Any DML function using an invalid

type designation ¢ an argument will return an error.

I1=19

ad




2

Values of internal record type designation are assigned
sequentially as set declarations are encountered in the source
schema. DML functions use internal type designation values as

arguments.

L3=20




THISPAGEISBESTQUALIIYPRACIICABMQ
FROM COPY FURNLSHED TO DDG o

MULTI-ACCESS DATA BASE MANAGEMENT SYSTEM
(MADMAN FOR THE PDP-11 AND THE H6UU0)

DATA MANIPULATION LANGUAGE MANUAL

This menual conteins the documentation for the Multi-Access
Data Base lfanagement System (HADMAN) Deate Manipulation Lenguage
(DML). ., The 1information contained 1in this document 1is no

O T

intenccd fcr e novice recder; the reader is expected to hav
some knowlcdge of dats base facilities and languages to use
thosc fecilities. He 1s also expected to have a working
knowledge of FORTRAN IV.

SADMAN  was originelly implemented on the FDF-11 under the
FEX~-11D operating system. For the most part, the descriptions

conteéinec¢ hercin are machine a2nd system independent. However,
scme of the data formats are based onm & word size of two bytes
(e bits) for the PDP-11, 4 bytes (30 bits) for the HolLUU. An

cttempt hes been made to modify the references to CP-11 Adatsa
formets to reflect those of the HouUuu.

Lxcept for interfacing with the particular operating
system, MADMAN on the PDP-11 and HADHAN on the HoUUU &are the

same.
Jznuery 1976 for MADMAN on the PCP-11

June 1977 for PHACHMAN on the H6U0JU

Copyright 1Y76 by General Electric Company

111-1/111-2




] 5 GENERAL DESCRIPTION OF MADMAN
1.1 Functions

The MADMAN data base management system (DBMS) provides an
orderly and controlled means for a multiplicity of application
programs written in Fortran to simultaneously access and update
a data base.

The DBMS maintains stored data according to a predefined
structure, and stores and retrieves data at the reguest of the
application programs. The data is organized and managed by the
DBMS so as to provide efficient access to desired subsets of the
data, and to relieve the application program of details of data
access procedures.

A Data Definition Language (DDL) is provided to allow the
data base administrator to specify how the data 1s to be
tructured in the data base. The specification of the source
chema 1is written in the DDL and is then compiled to produce an
cbject schema or structure table for the data base. The object
schema 1s loaded with the DBMS, so that it can properly manage
the data base. An authority code for each record type and 1item
in the data base is used to provide a subsetting mechanism.

n Q

0

A Data Manipulation Language (DML) 1is provided, in the form
of a set of Fortran subroutines, to allow application programs
to access and update the data in the data base. A prescan
program is provided which scans the Fortran application programs
and produces additional data declarations corresponding to the
data 1items of the records accessed by the program. An
application program declares which schema and subset of that
schema it needs via an INVOKE statement. The prescan program
uses the INVOKE statement and output from the DDL compiler to
put the Fortran declarations in the application program.

The DBMS provides a means for the detection of conflicting
accesses to the data bese. Concurrency control is provided at
the page level. A program wishing to modify a page will be
allowed to do so only if no other programs are using it for
reading or updating. Once a program has modified a page, the
page 1s locked to others until the modifying program terminates.
Multiple readers are allowed for a page, but no program can
modify it until the readers have terminated. Resolution of
conflicting accesses is invisible to the application programs.

The DBMS concurrency control mechanism 1is such that it
iifferentiates between deadlocks and simple conflicts (conflicts

which are not deadlocks). Simple conflicts are resolved by
making an application program wait wuntil the desired page
becomes free. However, to resolve a deadlock, one or more of

the conflicting programs is aborted and must be rerun.

I1I-3




P/

In the event that a program is aborted, the DBMS rolls back
the changes made to the data base by that program. This
rollback is transparent to the application program.

A recovery capability is provided so that after a system
failure changes <can be rolled back for programs in execution
when the system failed.

A Data Base Utility (DBU) is wused to initialize a data
base, put a data base on-line, and take a data base off-line.
The DBU also provides other utility type functions, such as
listing all data bases which are on-line. For MADMAN on the
H6000, DBU is divided into two programs-- DBUl which is 1loaded
with the DBMS, and DBU2 which is a free standing program. See
the Data Base Utility One and Data Base Utility Two manual for
details.

1.2 Interfaces

Pictorially, the module interfaces h~tween the parts of the
DBMS 1is as shown in figure 1. The DBM:5 has interfaces to the
application programs and mass storage device containing the data
base and rollback file.

I [ [
| MADMAN DBMS | | DATA |
| | | BASE |

I S5 R I o i |=$=] l

| AP |-+-| FLI |-| DBDH |-| DMLP |-| DBPM | |

I b j- S || (.

I f e b ¥ <) B j ) l
| | | BEFORE |
| | | FILE |
I | {1 |

Figure 1

Application Programs (AP) interface to the DBMS via a set
of Fortran subroutines called the Fortran Language Interface
(FLI). The Fortran subroutine calls form the Data Manipulation
Language (DML), which is documented below.

The mass storage device 1interfaces are input and output

commands to the data base and before-page-image storage (also
called the before file) for rollkbacks.

[11-4




"

..

1.3 Processing of a Typical Program on the PDP-11

To better illustrate the interfaces among the parts of the
DBMS and between the DBMS and other parts of the system, we
describe the path of flow for a typical program:

After an application program is placed into execution, &s
part of its initialization, it tells the DBMS of 1its intention
to access a data base via a call to the DBOPEN procedure. The
DBOPEN routine reformats the procedure parameters and passes the
information to the Data Base Device Handler (DBDH) . Based on
this information and other default information, the DBDH
allocates a suitable Data Manipulation Language Processor (DMLP)
for the AP and supervises a check for other resources.

During the execution of the AP, calls are made on the DBMS
via Fortran procedure <calls. These calls transfer control to
subroutines called the Fortran Language Interface (FLI). The
FLTI routines reformat the procedure arguments and provide some
minor preliminary error checking and then pass the procedure
parameters on to the DBDH via a system directive. The DBDH
moves the arguments and any other deta needed to process th
procedure call into the addressing space of the DMLP
corresponding to the AP, Eor protection reasons, this
addressing space 1s entirely different from the AP addressing
space.

The DMLP is now awakened and proceeds to interpret the
procedure arguments and perform the desired actions. During
this execution, the DMLP may call on the Data Rase Page Manager
(DBPM) to read or write pages of data from or to the data base.
The DBPM handles all concurrent access control to the data base.
For example, it does not allow two DMLP's, corresponding to two
separate AP's, to have the same page of the data base at the
same time for modification.

Also during execution of the DML procedure call, the DMLP
may call on the DBDH to move data from the DMLP page buffers
into the AP working storage area.

Upon completing the execution of the DML procedure, the
DMLP returns status indicators to the DBDH, to be passed to the
FLI and the AP. After checking for any error status, the FLI
returns control to the user program.

Finally, as part of terminating, the AP issues a call to
the DBTERM procedure to tell the DBMS that it is through using
the data base and that the resources can be released.

During the execution of the AP, the DBMS kceps copies of
the original contents of all data base pages modified by the AP.
The original contents of these pages are saved on the ‘'before'
Eile. In the event the AP is aborted, all the changes made to

LIi=25




-~

the data base can be undone via the information 1in the before
file.

Note that one of the main functions of the DBDH is to act
as a communication interface between the AP and DML? addressing
spaces. Some operating systems have the facilities for
interprocess communication required by MADMAN. On such systems,
the other functions of the DBDH are absorbed by the FLI and DMLP
and the DBDH module does not exist. On the H6000, the standard
GCOS III system routine, Intercom 1/0, takes the place of the
DBDH.

1.4 Data Structures Supported

Data structures supported by the DBMS are a subset of the
features described in the CODASYL Data Description Language
Journal of Development [l]. This subset is similar to that used
by IDS. CODASYL terminology is used in this document. However
in this section, -equivalent IDS features with different names
are denoted by [IDS: <term>].

The structure of any data base supported by this DBMS must
be predefined by a schema. The schema is written in the Data
Description Lanqguage (DDL) by the Data Base Administrator (DBA),
who is responsible for data base design and maintenance.

Elements of data structures are items [IDS: fields],
records, and sets [IDS: chains]. Records are composed of
items. Sets provide a mechanism for relating records which have
some common significance but not necessarily common data.

The schema also specifies areas [IDS: subfile] or
subdivisions of physical storage space in which records of each
type will be stored. A record type may be restricted to certain
areas.

The schema defines types of elements. Run wunits [IDS:
programs] cause occurrences of these elements to be stored or
accessed. It is 1important to distinguish between type and
occurrence. The schema 1is prepared and maintained separately
from both the data base and run units. There is no subschema as
such, however a subsetting facility is provided, via authority
codes.

Item types may be binary integer, binary floating point
(long or short), or ASCII. Variable-length item types are not
supported. Record types consist of a fixed number of
occurrences of each of zero or more item types. Each item type
must participate in exactly one record type.

For each set type, one record type must be designated the
owner type and one or more other record types designated member
types. Cycles are not supported. Otherwise, record types may

II1-6




participate as owner Oor member in any number of set types.
Records can become members of an occurrence of a set either

automatically (when the record is «created) or manually. Set
membership can be optional, mandatory in a set but allowing set
reassignment, or fixed in a particular set occurrence. Dynamic

sets are not supported.

Set men! >rship can be assigned in two ways: (1)
automatically when a record occurrence 1is created or (2)
manually by the application program.

Singular sets are supported. Associative access to any
record type may be specified, wusing a randomizing (calc)
procedure. User defined randomizing procedures are supported

and different randomizing procedures can be specified for
individual record types. Duplicate key values may be permitted
in either case.

1.5 Data Manipulation Provisions

The Data Manipulation Language (DML) is the interface by
which the run unit accesses the data base. The DML is similar
to the proposed CODASYL facility [2], z2nd consists here of a
number of Fortran subroutine calls available to the run unit.

Data transfer between the data base and run unit is
controlled by the DBMS, which copies data between a user working
area (UWA) accessible to the run unit and the data base. The
UWA consists of labeled common areas, one for each record type,
the declarations for which are prepared by the prescaen program.

Each record in the data base has a data bcse key (DBK)
HEDS * reference code] which uniguely identifies the record to
the DBMS and permits its retrieval. DBK values 2re invariant
for the duration of run unit execution, but may be reassigned
from one execution to another, due to data base restructuring or
repacking.

The DBMS maintains currency tables for each run unit in
execution. These tables contain the DBK of the current recodrd
of the run unit, current record of each record type, and current
occurrence and record of each set type. Currency table updating
may be inhibited by the run unit.

The process of locating a record 1in the data base is
considered logically distinct from the process of moving data
from the record to the UWA. The DML provides these separate
functions as well as combined operations.

The DML functions may be divided into three categories:
those dealing with data retrieval, those concerned with updating
the data base, and miscellaneous operations. The last category

I1X=7




is concerned with control, status, and DBK manipulation.
Procedures available in each category are described below.

Retrieval functions cause the DBMS to locate records and
optionally copy them to the UWA. Any of the following may be
used as the basis for locating records:

1) The DBK is specified by the run unit.

2) A key item value is specified by the run unit, and
the record type was declared 1in the schema to be
accessible in this manner.

3) The record participates in a set occurrence
specified by the run unit. Set ordering
characteristics are specified 1in the schema, and
member records are accessed in this sequence.

4) The record is located in an area specified by the
run unit.

In all but the first case above, there will generally be
multiple records satisfying the specified condition. The DBMS
will access and return these one at a time as reguested by the
run unit.

Data base update functions allow the run unit to create,
destroy, and modify records and to assign and alter set
participation. When a record is created or modified,
appropriate data values are copied from the UWA to items in the
record.

Whenever a record 1is to be made a member of a set, it is
assigned to the current occurrence of the appropriate set type
as indicated by the currency tables. The run unit is
responsible for establishing the appropriate set currencies
before 1issuing a procedure call which results in set assignment
or reassignment. The DBMS does not support a set selection
[IDS: unigue master] capability which would locate appropriate
sets based on values in the UWA.

The miscellaneous functions permit DBK values to be copied
from the currency tables to run unit-addressable storage, permit
testing for set membership assignment, and permit the run unit
to specify error processing routines.

1.6 Authority Control
The principle of authority control is used as a method of

implementing a subsetting mechanism and as a method to afford a
measure of data protection at both the record and item level.

III-8




An authority code is associated with each record type, each
item type within records, and each set type. The authority code
indicates which run units have access to the records, items, or
sets. The method of 1mplementation allows for wup to some
maximum number of basic subsets. This maximum number of subsets
is currently set to 15. Any program can be given access to one
or more of these subsets. Each authority code consists of a bit
mask, one bit for each subset. One bit is reserved as a special
indicator for deta base administrative functions.

When an application program opens the data base, it
specifies the authority key with which it wants to access the
data base. Any time the program requests access to a record,
item, or set, its key is anded to the authority code to verify
that the access can be granted.

Each record has both a read and a write authority code.
Each item has only one authority code. These authority codes
are specified 1in the DDL source schema. If an application is
granted read or write access at the record 1level, it has the
corresponding access to items in that record to which it has
authority to access.

The set access 1is derived from the record accesses. An
application program 1is granted access to a set type if it has
access to the owner record type and at least one of the member
record types.

By the wuse of the above procedure, an application program
is 3iven access to the data records, items, and sets which are
pertinent to its operation, the remaining records, items, and
sets being invisible to it. For example, if items are added to
or removed from a record to which an application program has
access and these are items to which the program does not have
access, no changes are necessary in the application program for
it to continue functioning properly.

References:

1. CODASYL Data Description Language Journal of Development.
June 1973. National Bureau of Standards. NBS Handbook 113.

Z. CODASYL COBOL Journal of Development - 1975. available
from:

Technical Services Branch

Department of Supply and Ser ices

5th Floor, 88 Metcalf Street

Ottawa, Ontario, CANADA

K1A, 0S5

III-9

L

il



2. INTRODUCTION TO THE DATA MANIPULATION LANGUAGE
2.1 General Information

This section provides an introduction to the Data
Manipulation Language (DML) and 1its use. The next section
describes 1in detail each DML procedure available to the
application programmer.

2.1.1 Application Programmer Level of Knowledge

The application programmer using this data manipulation
language is expected to have a good working knowledge of the
concepts and features of this data base facility. In addition,
he is expected to understand the portion of the data structure
pertinent to his program. For example, this level of knowledge
is generally equivalent -- although not identical -~ to that
required for application programming using IDS.

2.1.2 Visible Data Structures

DBMS applications programs contain references to names of
data base structures such as record types, data items, set types
and areas. To execute correctly, application programs must
contain declaration statements defining these names. Since the
application programmer ordinarily does not have sufficient
information about the structure of the data base to code these
statements, the prescan preprocessor is wused to generate and
insert them into the application program prior to compilation.
The application programmer tells prescan where to insert these
declaration statements by placing a pseudo statement (INVOKE) in
the source program.

These 1inserted statements declare all necessary symbolic
names for item, record, and set types, for areas, and for DBMS
parameters. They also create the User Working Area (UWA) in the
form of labeled common areas within the run unit addressing
space. Program references to data items are references to UWA
locations. All other symbolic names are equated to numeric
values used as identifiers by the DBMS. The programmer should
always wuse symbolic names and generally need not be concerned
with the corresponding numeric values.

Only the element types declared by these inserted
declaration statements will be accessible to the run unit.
Because of subsetting, entire records or items within records
may be omitted from the declarations. 1In addition, a run unit
may be allowed to modify some of the record types visible to it,
but only read other types. The UWA is also accessible to the
DBMS so that it may copy data between the data base and the UWA.

ITI-10

il it e

i SR e i e

Py




2.1.3 Data Base Keys

A record's data base key (DBK) is the logical address of
the record in the data base. DBKs are 4 bytes 1in 1length, and
contain the area 1identification, page number within the area,
and logical record number (line number) within the page on which
the record is stored. (The line number is in the first byte,
arca number in the second byte, and page number in the last two
bytes on the H6000.)

A record may be physically moved within a pcge during space
reclamation within the page. This does not alter its DBK.

If a record is physically moved from one page to another,
its DBK will change. This never occurs as a result of DML calls
by run units, and never occurs for any record during the
lifetime of a run unit accessing that record. However, the data
bas~ administrator may cause certain record types to be repacked
in storage to meintain operating efficiency. The DBKs of such
records are subject to change between run unit executions, and
should not be saved beyond the lifetime of the run unit.

2.1 44 Currency Tables

The DBMS maintains tables of DBKs of certain records
processed by the run unit. These DBKs establish reference
positions in the data base and permit efficient retrieval of the
corresponding records. The DBMS retains (in these tables) the
DBK of one record of each type. Each such record is termed

current of type for its type. The DBMS alseo retains the DBE of
on« record 1n each area of the data base. Each such record 1is

termed current of area for its area. The DBMS also retains the
DBK of the record most recently processed by the run unit. This
record is termed the current of run unit.

In addition to the above, for each set type, the DBMS
maintains the DBKs of four records belonging to a single
occurrence of that set type:

. The record considered to be current of set,

The record following the current of set in set order,
3. The record preceding the current of set in set order,
4. The owner record of the set occurrence.

N —
.

If the proper record corresponding to any currency table
entry is not known to the DBMS at any time, a null value 1is
used. For any set type, a current set is identified if any of
the four set currency entries is non-null. In particular, a
current sct of a-given type may be identified even though there
is no record known as current of set.

ELE=14




Many DML functions utilize records identified by the
currency tables. The programmer is responsible for establishing
proper currency conditions before <calling such functions.
Generally, when a record is retrieved, <created, modified, or
otherwise processed as a result of a DML call, it becomes the
current of run unit, current of its record type, and current of
set for each set type 1in which it participates as owner or
member. The run unit may optionally suppress the record and set
currency updating. Updating of current of run unit can not be
suppressed. Note that the currency tables can only be modified
by the DBMS according to the result of a DML procedure. They
cannot be directly modified by the run unit.

Indicators for <current record of area are normally NOT
updated (except for the FINDA and OBTNA procedures), but can be
updated at the option of the run unit. When this updating is
permitted, the record processed becomes the current record of
the area in which it is stored.

2.1.5 DML Procedures

The following provides a brief description of the purpose
of each DML procedure:

Data Retrieval:

Four procedures are available for locating a record which
satisfies . a specified condition. _ These procedures are FIND,
FINDK, FINDD, and FINDA. They cause records to be located (DBKs
found), but do not copy data from the data base into the UWA.
There are four corresponding OBTN (obtain) procedures which
locate records in the same manner as the FIND procedures and
also copy data from the record into the UWA. Finally, the GET
procedure copies data from the current record of the run unit
into the UWA. A brief description of each r<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>